Semiharmonic graphs with fixed cyclomatic number
نویسندگان
چکیده
منابع مشابه
Semiharmonic graphs with fixed cyclomatic number
Let the trunk of a graph G be the graph obtained by removing all leaves of G. We prove that, for every integer c ≥ 2, there are at most finitely many trunks of semiharmonic graphs with cyclomatic number c — in contrast to the fact established by the last two of the present authors in their paper Semiharmonic Bicyclic Graphs (this journal) that there are infinitely many connected semiharmonic gr...
متن کاملHyperenergetic Graphs and Cyclomatic Number
AMS Mathematics Subject Classification (2000): 05C50
متن کاملSemiharmonic bicyclic graphs
Classification of harmonic and semiharmonic graphs according to their cyclomatic number became of interest recently. All finite harmonic graphs with up to four independent cycles, as well as all finite semiharmonic graphs with at most one cycle were determined. Here, we determine all finite semiharmonic bicyclic graphs. Besides that, we present several methods to construct semiharmonic graphs f...
متن کاملOn the fixed number of graphs
A set of vertices $S$ of a graph $G$ is called a fixing set of $G$, if only the trivial automorphism of $G$ fixes every vertex in $S$. The fixing number of a graph is the smallest cardinality of a fixing set. The fixed number of a graph $G$ is the minimum $k$, such that every $k$-set of vertices of $G$ is a fixing set of $G$. A graph $G$ is called a $k$-fixed graph, if its fix...
متن کاملPacking edge-disjoint cycles in graphs and the cyclomatic number
For a graph G let μ(G) denote the cyclomatic number and let ν(G) denote the maximum number of edge-disjoint cycles of G. We prove that for every k ≥ 0 there is a finite set P(k) such that every 2-connected graph G for which μ(G)− ν(G) = k arises by applying a simple extension rule to a graph in P(k). Furthermore, we determine P(k) for k ≤ 2 exactly.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2004
ISSN: 0893-9659
DOI: 10.1016/s0893-9659(04)90096-1